Ejercicios y Problemas 4º ESO

El cuarto curso de la ESO es fundamental para afianzar y aplicar los conocimientos adquiridos a lo largo de la etapa. En esta página, encontrarás recursos, ejercicios y problemas resueltos que te ayudarán a mejorar tus habilidades en cada asignatura. Estos materiales te permitirán consolidar lo que has aprendido en clase y estar bien preparado para tus exámenes.

Índice de Ejercicios de 4º de ESO por Asignatura

Práctica Rápida: Ejercicios y Preguntas Aleatorias con su Solución

¿Listo para poner a prueba lo que has aprendido? A continuación, te ofrecemos una serie de 20 preguntas aleatorias de todas las asignaturas de 4º de ESO. Cada vez que actualices la página, obtendrás nuevas preguntas para seguir practicando.

Ejercicio 1:
Utilizando la regla de Ruffini, resuelve el siguiente problema: Dado el polinomio \( P(x) = 2x^4 - 3x^3 + 5x^2 - 4x + 1 \), determina si \( x - 1 \) es un factor de \( P(x) \) y, en caso afirmativo, realiza la división para obtener el cociente y el residuo. ¿Cuál es el resultado de la división y qué significa el residuo en este contexto?
Ejercicio 2:
Utilizando la regla de Ruffini, realiza la división del polinomio \( P(x) = 2x^4 - 3x^3 + x^2 - 7x + 6 \) entre el binomio \( x - 2 \). Calcula el cociente y el residuo de la división.
Ejercicio 3:
Utilizando la Regla de Ruffini, realiza la división del polinomio \( P(x) = 2x^4 - 3x^3 + 5x^2 - 7x + 6 \) entre el binomio \( x - 2 \). Luego, determina el residuo de la división y verifica si \( x = 2 \) es una raíz del polinomio.
Ejercicio 4:
Utilizando la regla de Ruffini, realiza la división del polinomio \( P(x) = 2x^4 - 3x^3 + 5x^2 - 6x + 4 \) entre \( x - 2 \). Después de realizar la división, determina el resto y escribe el cociente como un polinomio de grado 3. ¿Cuál es el valor de \( P(2) \) y cómo se relaciona con el resto obtenido?
Ejercicio 5:
Utilizando la Regla de Ruffini, realiza la división del polinomio \( P(x) = 2x^3 - 6x^2 + 4x - 8 \) entre el binomio \( x - 2 \). ¿Cuál es el cociente y el residuo de esta división?
Ejercicio 6:
Utilizando la regla de Ruffini, realiza la división del polinomio \( P(x) = 2x^3 - 6x^2 + 4x - 8 \) entre \( x - 2 \). Indica el cociente y el residuo, y verifica tu respuesta multiplicando el cociente por el divisor y sumando el residuo.
Ejercicio 7:
Utilizando la regla de Ruffini, realiza la división del polinomio \( P(x) = 2x^3 - 6x^2 + 4x - 8 \) entre \( x - 2 \). Escribe el resultado de la división y el resto.
Ejercicio 8:
Utilizando la regla de Ruffini, realiza la división del polinomio \( P(x) = 2x^3 - 6x^2 + 4x - 8 \) entre \( x - 2 \). Determina el cociente y el residuo de la división. Además, verifica si \( x = 2 \) es raíz del polinomio \( P(x) \).
Ejercicio 9:
Utilizando la regla de Ruffini, realiza la división del polinomio \( P(x) = 2x^3 - 6x^2 + 4x - 8 \) entre \( x - 2 \). Determina el cociente y el residuo de esta división.
Ejercicio 10:
Utilizando la Regla de Ruffini, realiza la división del polinomio \( P(x) = 2x^3 - 6x^2 + 4x - 8 \) entre \( x - 2 \). Calcula el cociente y el residuo.
Ejercicio 11:
Utilizando la regla de Ruffini, realiza la división del polinomio \( P(x) = 2x^3 - 6x^2 + 4x - 8 \) entre \( x - 2 \). ¿Cuál es el cociente y el resto de esta división?
Ejercicio 12:
Utilizando la regla de Ruffini, realiza la división del polinomio \( P(x) = 2x^3 - 3x^2 + 4x - 6 \) entre \( x - 2 \) y determina el cociente y el residuo. ¿Cuál es el resultado de la división?
Ejercicio 13:
Utilizando la regla de Ruffini, realiza la división del polinomio \( P(x) = 2x^3 - 3x^2 + 4x - 5 \) entre el binomio \( x - 2 \). ¿Cuál es el resultado de la división y cuál es el residuo?
Ejercicio 14:
Utilizando la regla de Ruffini, realiza la división del polinomio \( P(x) = 2x^3 - 3x^2 + 4x - 5 \) entre el binomio \( x - 2 \). ¿Cuál es el cociente y el residuo de esta división?
Ejercicio 15:
Utilizando la regla de Ruffini, realiza la división del polinomio \( P(x) = 2x^3 - 3x^2 + 4x - 5 \) entre el binomio \( x - 1 \). Determina el cociente y el residuo de la división.
Ejercicio 16:
Utilizando la regla de Ruffini, realiza la división del polinomio \( P(x) = 2x^3 - 3x^2 + 4x - 5 \) entre \( x - 2 \). ¿Cuál es el cociente y el resto de esta división?
Ejercicio 17:
Utilizando la regla de Ruffini, realiza la división del polinomio \( P(x) = 2x^3 - 3x^2 + 4x - 5 \) entre \( x - 1 \). ¿Cuál es el cociente y el residuo de esta división?
Ejercicio 18:
Utilizando la Regla de Ruffini, factoriza el polinomio \( P(x) = 2x^4 - 6x^3 + 2x^2 - 8x + 4 \) y determina los posibles ceros del polinomio. Luego, verifica si \( x = 1 \) es una raíz del polinomio.
Ejercicio 19:
Utilizando la regla de Ruffini, factoriza el polinomio \( P(x) = 2x^4 - 3x^3 - 8x^2 + 5x + 6 \). Una vez que hayas encontrado uno de los factores, verifica tu respuesta multiplicando nuevamente los factores obtenidos. ¿Cuáles son los factores del polinomio?
Ejercicio 20:
Utilizando la regla de Ruffini, factoriza el polinomio \( P(x) = 2x^4 - 3x^3 - 5x^2 + 6x - 4 \). Además, determina las raíces del polinomio y verifica si son reales o complejas.

¿Quieres descargar en PDF o imprimir estos ejercicios de 4º ESO con soluciones?

Es fácil. Pulsa en el siguiente enlace y podrás convertir los ejercicios de repaso de 4º ESO en PDF con sus soluciones al final para descargarlos o imprimirlos y poder practicar sin el ordenador; a la vez que tienes los ejercicios resueltos para comprobar los resultados.

Scroll al inicio